Software Bill of Materials in Open Source C/C++ Projects: An Exploratory
Study

Hangbo Zhang
University of Hawaii at Manoa
hangbo @hawaii.edu

Abstract

Understanding the dynamics of project dependencies
is pivotal for assessing software maintenance and
evolution. This study aims to investigate the update
frequency, common library changes, and reasons
behind dependency modifications in C/C++ projects.
Leveraging version control history and software bill of
materials (SBOM) data from GitHub repositories, we
analyze release cycles, commit logs, and dependency
manifests. Our methodology involves the selection of
projects meeting language-specific criteria, retrieval
of SBOM information using the GitHub REST API,
and construction of a SQLite database for structured
analysis. By addressing Research Questions (RQs)
concerning update frequency, common library changes,
and reasons for modifications, this research sheds light
on software maintenance strategies, responsiveness to
emerging issues, and alignment with industry standards.

Keywords:
REST API

SBOM, C/C++, dependencies, Github

1. Introduction

In today’s software-centric landscape,
comprehending the intricate interplay of dependencies
within a project stands as a pivotal pillar for ensuring
security, compliance, and transparency. As software
ecosystems burgeon in complexity, the imperative
for robust documentation of these dependencies has
never been more pronounced. This is precisely where
the Software Bill of Materials (SBOM) assumes its
significance.

Originating from the manufacturing industry, where
a bill of materials (BOM) served as an inventory
roster of sub-assemblies and components within a

parent assembly [8], the SBOM emerges as the
software equivalent—a foundational construct vital for
fortifying software supply chain security. Functioning
as a nested inventory, the SBOM meticulously
enumerates the software components comprising a
project. It delineates these components, furnishing
pertinent information and delineating the supply chain
relationships interlinking them [10]. Essentially, the
SBOM functions as a comprehensive ledger, cataloging
all components, libraries, frameworks, and software
artifacts incorporated within a project. Its utility
lies in furnishing invaluable insights into the project’s
composition, empowering developers, stakeholders,
and security professionals to navigate vulnerability
management, licensing compliance, and risk mitigation
strategies with informed precision.

However, despite the manifold benefits of SBOMs,
their adoption trajectory remains somewhat subdued. A
significant proportion of existing third-party software or
components—whether open source or proprietary—Ilack
accompanying SBOMs. Ideally, SBOM generation
should commence early in the software development life
cycle, gradually accruing enriched information through
subsequent stages [20]. The absence of a unified
package manager exacerbates this issue in the realm
of C/C++ development, rendering SBOM generation
an arduous task. Nonetheless, during our preliminary
investigations, we discerned that GitHub’s built-in
SBOM feature seemed poised to provide insights into
C/C++ projects, prompting us to delve deeper into its
potential.

This document serves as an instructional blueprint
for conducting an SBOM study on C/C++ projects
hosted on GitHub. Through meticulous analysis,
extraction, and documentation of dependencies and
associated metadata, our objective is to address the

following research questions (RQs):

RQ1: How frequently do developers update
project dependencies?

Understanding the cadence of updates to project
dependencies is pivotal for gauging project maintenance
and evolution. Through scrutiny of version control
history, commit logs, and release notes, we endeavor to
discern the frequency with which developers integrate
dependency updates. Factors such as the project’s
development tempo, the exigency of security patches,
and the availability of new features or bug fixes
in upstream dependencies influence update frequency.
Furthermore, examining patterns of dependency updates
over time offers insights into the project’s overarching
maintenance strategy and its responsiveness to emergent
issues and advancements within the software realm.

RQ2: What are the common libraries that
undergo changes?

Unveiling common libraries subject to changes
provides valuable insights into evolving project
requisites, technological trends, and community-driven
development dynamics. By parsing through version
control history and dependency manifests, we aim to
pinpoint libraries frequently updated or replaced. These
may encompass core dependencies like frameworks,
utility libraries, or platform-specific components.
Understanding the rationale behind these changes
can illuminate the project’s adaptability to evolving
technologies, performance enhancements, or shifts in
development paradigms.

RQ3: What are the reasons behind these
changes?

Delving into the motives driving dependency
changes furnishes contextual understanding of the
project’s development trajectory and decision-making
ethos. By dissecting the rationale underlying
dependency alterations, we aspire to glean deeper
insights into the project’s prioritization of stability,
security, performance, and feature enhancements.
Furthermore, this exploration sheds light on the project’s
alignment with industry standards and best practices,
elucidating its strategic evolution within the software
landscape.

2. Methodology

The methodology employed for establishing the
database aimed to ensure systematic organization
and comprehensive coverage of Software Bill of
Materials (SBOM) information extracted from GitHub
repositories. Through meticulous project selection
criteria, data retrieval procedures, and database
construction steps as shown in Figure 1, we laid the

foundation for a robust dataset conducive to in-depth
analysis and inquiry.

Fetch data

Projectl. Using REST API ot
Release
Project2
—| osv
SEART

RQ2

RQ3

Fetch data
Using REST API

oBujuy

[

[—

Project Data Database

Selection Retrival Construction Analysis

Figure 1: Methodology

2.1. Project Selection Criteria

The selection of projects for inclusion in the
database followed specific criteria to ensure relevance
and diversity. We are using the SEART[4], a GitHub
Search Engine to sample repositories to use by using
several combinations of selection criteria, to get the
projects from GitHub based on the following criteria:

* Language: Projects written in C/C++ were
considered to align with the specific language
focus.

* Release Count: Projects with at least 100
releases were selected to capture a sufficient
number of data points for analysis.

* Not a Fork: Only original projects, not forks,
were included to maintain data integrity.

* Recent Activity: Projects with commits within
the last 6 months were chosen to ensure the
inclusion of actively maintained projects.

Following the application of these criteria, the
resultant list of projects was downloaded as a CSV file
for subsequent processing and analysis. By adhering to
these rigorous selection criteria, we aimed to construct
a robust dataset that encompasses a diverse array of
C/C++ projects on GitHub, facilitating comprehensive
insights into the evolution of SBOM within the context
of software development.

2.2. Data Retrieval

To acquire Software Bill of Materials (SBOM)
information spanning between releases, we employed

the GitHub REST API as our primary data collecting
method [6]. Initially, a GitHub Fine-grained
personal access token [5] was generated to facilitate
authentication and access to the GitHub database.
Subsequently, we leveraged data from a CSV file
generated in the preceding step, extracting repository
owner and name details for each project. This enabled
precise retrieval of project-specific information.

Utilizing the extracted repository owner and name,
we constructed request URLs to retrieve all releases
associated with each project, utilizing the GitHub REST
API endpoint for releases [14]. Upon obtaining the
release tags, we proceeded to gather comprehensive
release information. However, variations in project
structures necessitated additional scrutiny. In certain
cases, the retrieved tag SHA lacked comprehensive
commit information, prompting us to augment our
approach by verifying tag SHAs through the REST API
endpoint for tags [13]. This ensured acquisition of
essential commit SHA details.

With a comprehensive collection of commit SHAs
for each project’s releases, arranged in descending
chronological order, we transitioned to the final phase
of this step. We facilitated the extraction of SBOM
changes between consecutive releases by utilizing
the GitHub REST API endpoint for dependency
reviews [12]. The resultant SBOM differences were
meticulously cataloged and saved as JSON files, serving
as vital inputs for subsequent database construction and
analyses.

Through this systematic approach, we ensured the
accurate and systematic retrieval of SBOM information,
facilitating informed decision-making and enhancing
project management capabilities.

2.3. Database Construction

In order to facilitate systematic analysis and storage
of Software Bill of Materials (SBOM) data extracted
from GitHub repositories, we constructed a relational
database using SQLite. This section outlines the process
of database construction, detailing the schema design
and data population procedures.

Schema Design: The database schema comprises
four interconnected tables, each serving distinct roles
in organizing SBOM-related information. Detailed
structure and description is showed in Table 1.

1. repo_table: It serves as the cornerstone
of the database, stroing metadata pertaining to
individual repositories.

2. diff_table: It captures the commit SHA
for all the releases for all projects.

Database Table Columns Description
repo_name name of repo
repo_owner owner of repo

repo_table repo_url link of repo
commits # of commits
releases # of releases
diff _file file name
base_sha earlier commit SHA
base_tag earlier tag
diff_table base_date date
head_sha newer commit SHA
head_tag newer commit tag
head_date date
repo_name forgien key
change_id 1D
change_type add/remove
manifest manifest file
ecosystem -
name name of dependency
change_table version -
package_url -
license -
source_repo_url -
scope develop/run time
vulnerability -
diff _file forgien key
release_tag release version tag
sha commit SHA
notes_table repo_name forgien key
release_note notes
commit_message messages

Table 1: Database Structure

3. change_table: It stores detailed
information about individual changes within
SBOM:s.

4. notes_table: It stores all the release notes
and commit messages for each change.

Data Population Procedure: The database
construction process involves iteratively populating
the aforementioned tables with information extracted
from SBOM-related files, CSV repositories, and
GitHub API endpoints. The procedure encompasses the
following steps. Establish a connection to the SQLite
database using Python’s sqlite3 module. Execute
SQL commands to create the repo_table, diff table,
change_table and notes_table if they do not already exist.
Read repository metadata from a CSV file containing
details such as repository name, owner, URL, commits,
and releases. Populate the repo_table with repository
metadata extracted from the CSV file. Traverse through
directories containing SBOM difference files (CSV
format) for each repository. Extract SBOM difference
details and insert them into the diff_table, linking each
entry to its corresponding repository in the repo_table.
Traverse through directories containing SBOM change
JSON files for each repository. Extract SBOM change
details and insert them into the change_table, linking

each entry to its corresponding SBOM diff in the
diff table. Utilize the GitHub API to fetch release notes
associated with each tag. If successful, extract the
release note and commit message for the corresponding
SHA. Insert the retrieved release notes and commit
messages into the notes_table, linking each entry to
its corresponding repository and tag. Implement error
handling to manage exceptions such as missing or
invalid data during the data population process. Commit
all changes to the SQLite database and close the
connection, ensuring data integrity and persistence.

By meticulously organizing SBOM-related
information within a relational database and
supplementing it with release notes from GitHub,
we establish a structured framework for subsequent
analysis and querying, enabling comprehensive insights
into software dependencies, changes, and release
information across GitHub repositories.

3. Data Analysis

In order to effectively address our research inquiries,
we adhere to a meticulous preprocessing protocol
applied to both the change_table and diff_table
datasets. It is imperative to meticulously filter out
extraneous data artifacts, such as lock files (’yarn.lock’,
’package-lock.json’), which are automatically generated
during software development processes and lack direct
developer intervention. This preliminary filtration
process ensures the integrity and relevance of our
subsequent analyses. Consequently, we obtain two
refined datasets: the filtered_change_table
and filtered.diff_table, both devoid of
non-essential data elements. These refined datasets
serve as the foundational basis for our comprehensive
analytical investigations, fostering a rigorous and
scientifically sound approach to our research objectives

3.1. RQ1: How frequently do developers
update project dependencies?

To address RQ1, we’ve implemented a systematic
methodology to determine the release gap for each
project, resulting in the creation of the gap_table.
Here’s how we achieved this:

Initially, we extracted all repository names from
the repo_table. These repositories served as
the foundation for subsequent data retrieval and
analysis. Leveraging these repository names, we
then retrieved the corresponding difference files from
the filtered diff table. These files document
variations between successive releases and are denoted
numerically to indicate their position in the release
sequence. For example, if a project named “projectl”

experiences dependency changes between the most
recent and the previous release, the associated difference
file would be labeled as projectl diff0. json.
Similarly, projectl_diffl.json would capture
differences between the previous release and the one
before it, and so forth.

By examining these difference files, we were able to
ascertain the release gap for each project. The presence
of changes within these files allowed us to determine
the release gap, providing valuable insights into the
temporal evolution of project dependencies. Finally, the
calculated release gap data was compiled and inserted
into the gap_table, enabling comprehensive analysis
and exploration of temporal dynamics across projects.

3.1.1. Number of Releases with Changes The
distribution of the number of releases with changes
exhibits a pronounced right skewness. The majority
of projects manifest minimal changes in their releases,
with a median of 0. However, a subset of projects
demonstrates a comparatively high number of changes,
as evidenced by the maximum value of 613. Shown in
Table 2.

Count Min QI Median Q3 Max
number of changes for all projects

314 0 0 0 8 613

number of changes without zero change projects

144 1 3 9 225 613
release gaps

3002 1 1 2 5 462

Table 2: Five-Number Summary

To refine our analysis, we initially filtered out
repositories with zero releases containing changes,
resulting in a dataset of 144 repositories. Subsequently,
we applied the Interquartile Range (IQR) method to
identify and remove outliers, resulting in the exclusion
of 13 repositories. This meticulous approach aims to
enhance the robustness of our analysis by focusing on
repositories with substantial changes while mitigating
the influence of extreme values.

Upon reevaluating the filtered dataset, the following
insights emerge as shown in Table 3:

e Dataset Size: The filtered dataset comprises
131 repositories, providing a more targeted
perspective on repositories with non-zero
changes.

* Descriptive Statistics:

— Mean: The mean number of changes is
12.41, indicating a moderate average across
repositories.

Count Mean Std Dev Min Q1 Median Q3 Max IQR
number of changes without outliers
131 12.41 12.62 1 3 8 16.5 51 13.5
release gap without outliers
2672 2.59 2.26 1 2 3 11 2
Table 3: Fine detaited Five-Number Summary without outliers
— Standard Deviation: A wide standard — Interquartile Range(IQR): The IQR,

deviation of 12.62 implies a considerable
spread in the data, signifying variability in
the number of changes.

— Interquartile Range(IQR): The IQR of
13.5 reflects the spread of the middle 50%
of repositories, underscoring significant
variability in the central distribution.

This refined analysis provides a scientifically
rigorous exploration of the distribution of changes
in repository releases. The meticulous filtering and
outlier removal steps contribute to the reliability
and interpretability of the observed patterns, offering
valuable insights into the frequency and variability of
changes across the examined repositories.

3.1.2. Release Gap (All Projects) The distribution
of release gaps, similar to the number of releases with
changes, follows a right-skewed pattern. While the
majority of projects exhibit relatively modest release
gaps, a subset of projects demonstrates more extended
intervals, with the maximum release gap reaching 462
as shown in Table 2.

To enhance the robustness of our analysis, we
applied the Interquartile Range (IQR) method to identify
and subsequently remove outliers from the release gap
dataset. This meticulous curation resulted in a refined
dataset, reducing its size from 3002 to 2672 instances.

Upon reevaluating the filtered dataset, the following
insights emerge as shown in Table 3:

* Dataset Size: the filtered dataset now
comprises 2672 instances, providing a focused
perspective on repositories with distinct release
gap characteristics.

¢ Descriptive Statistics:

— Mean: The mean release gap stands at
2.59, indicating a moderate average duration
between successive releases.

— Standard Deviation: With a standard
deviation of 2.26, there is a moderate level
of variability in release gap values across the
dataset.

measured at 2.0, delineates the central
spread of the middle 50% of release gap
values, indicating a relatively concentrated
distribution around the median.

Summary for RQ1:We observe a right-skewed
pattern for both number of releases with
changes and release gap, indicating that while
the majority of projects undergo minimal
changes in each release with short intervals,
a subset of projects experiences more significant
alterations. This variability underscores the
diverse nature of dependency updates across
repositories.

3.1.3. Findings The analysis reveals that developers
update project dependencies with varying frequencies.
By examining the distribution of the number of releases
with changes, we observe a right-skewed pattern,
indicating that while the majority of projects undergo
minimal changes in each release, a subset of projects
experiences more significant alterations. This variability
underscores the diverse nature of dependency updates
across repositories.

Moreover, the investigation into release gaps
elucidates the temporal dynamics of dependency
changes. The distribution of release gaps follows
a similar right-skewed pattern, with the majority of
projects exhibiting relatively short intervals between
successive releases. However, a subset of projects
demonstrates more extended release gaps, suggesting
differing update cadences among repositories.

By applying rigorous filtering and outlier removal
techniques, the analysis enhances the reliability and
interpretability of the observed patterns. The refined
datasets provide focused insights into repositories with
distinct characteristics in terms of the frequency and
temporal distribution of dependency updates.

In conclusion, the findings offer valuable insights
into the frequency of dependency updates among
software projects, facilitating a deeper understanding of
the release process and informing future research and
development efforts in software engineering practices.

3.2. RQ2: What are the common libraries
that undergo changes?

To address RQ2, we devised a methodical process
to construct the common_lib table, leveraging
data from both the filtered_ change_table and
filtered diff table. Here’s a detailed outline of
our approach:

We began by extracting the distinct repository names
from the filtered_.diff_table. For each project,
we executed SQL queries to retrieve the top five
most frequently added and removed libraries, storing
them in separate lists along with their respective
occurrences. Subsequently, we inserted this data into the
common_1ib table, which records the top five added
libraries with their occurrences, the top five removed
libraries with occurrences, and the overall top five most
used libraries.

Additionally, we computed the total occurrence of
the top five libraries for each change type across all
projects. Furthermore, we identified the top five libraries
for each change type that were most commonly used
across all projects, along with the number of projects
utilizing them.

Dependency Added Removed
Usage | Projects | Usage | Projects

(actions)/checkout 1746 125 947 94
O/upload-artifact 488 82 259 58
()/cache 274 41 111 23
()/setup-python 272 30 147 21
()/download-artifact 188 46 88 26
Junit 144 3 98 3
semver 13 4 5 1
debug 11 2 6 1

Table 4: Occurrence of Dependencies Filtered

3.2.1. Library The analysis of Table 4 column
“Added” highlights significant observations regarding
the ’Added’ change type. The most frequently
utilized dependency is ’actions/checkout,” evidencing
its pervasive usage across 125 distinct projects. The
accumulated total occurrences of 1746 underscore its
integral role in project development, suggesting a
consistent need for updates across diverse development
processes. ’actions/checkout’ is a GitHub Actions
workflow that enables developers to checkout or clone
the source code repository of their project into the
execution environment of a GitHub Actions workflow.
In other words, it’s a step in the workflow that ensures
the relevant source code is available for subsequent tasks
or actions in the workflow. the high occurrences and
consistent updating of "actions/checkout’ across projects

suggest that it is a fundamental and frequently utilized
part of the GitHub Actions workflows in the examined
repositories. Developers often update it to benefit from
new features, improvements, or to adapt to changes in
their projects.

Following closely, “actions/upload-artifact’
ranks as the second most utilized dependency,
registering 488 occurrences distributed across 82
projects. This indicates a widespread adoption of this
dependency, albeit at a slightly lower frequency than
“actions/checkout.” ’actions/upload-artifact’ is another
GitHub Actions workflow that enables developers to
upload and share files or artifacts between different
jobs within the same workflow, or even between
different workflows. This action allows for the transfer
of build outputs, test results, or any other files that
are relevant to the workflow. the high occurrences
of ’actions/upload-artifact’ across projects indicate
that developers are frequently using this action to
share important artifacts during their workflows.
The total occurrences and the number of projects
using it suggest that it plays a significant role in the
continuous integration or deployment processes of these
repositories.

Securing the third position is ’actions/cache,
with 274 occurrences spanning 41 projects. This
comparatively lower distribution implies a more
specialized use, potentially within projects requiring
specific caching functionalities. ’actions/cache’ 1is
a GitHub Actions workflow that provides caching
mechanisms to speed up workflows by storing and
retrieving files or dependencies between workflow runs.
This action is often used to cache dependencies, build
artifacts, or other files that can be reused across multiple
workflow runs to avoid redundant work. the high total
occurrences of “actions/cache’ across projects indicate
that developers frequently utilize this action to optimize
their workflows by caching and reusing certain files
or dependencies. The number of projects using it
suggests its widespread adoption in the GitHub Actions
workflows.

Intriguingly, ’semver’ and ’debug’ exhibit notable
total occurrences of 423 and 272, respectively.
However, their lower usage across projects suggests
a distinct pattern. These dependencies, characterized
by higher occurrences and lower project adoption,
may denote a frequent need for updates within
specific development contexts. ‘semver’ typically refers
to Semantic Versioning, a versioning scheme used
in software development to convey meaning about
the underlying code changes. Semantic Versioning
(SemVer) follows a three-part version number format:
MAJOR.MINOR.PATCH. the high total occurrence

(423) of ’semver’ across projects may suggest that
developers are actively utilizing Semantic Versioning
in their projects. This could indicate a commitment
to following a standardized versioning approach, which
helps communicate the nature of changes in software
releases. The dependency ’debug’ is a JavaScript
debugging utility inspired by Node.js core’s debugging
technique. It is designed to work in both Node.js
environments and web browsers. Developers commonly
use this utility to facilitate the debugging process
during software development. Considering its high
total occurrence of 272, it appears to be widely
utilized across projects. The frequent updates to this
dependency suggest that developers actively maintain
and enhance their debugging capabilities, emphasizing
the importance of robust debugging practices in the
software development life cycle.

Conversely, ’actions/setup-python’ and
“actions/download-artifact’” display a lower frequency of
updates. Despite their higher project adoption (30 and
46 projects, respectively), the lower total occurrences
imply a less dynamic updating pattern. This behavior
may be indicative of dependencies integral to a project’s
core functionality, requiring infrequent updates.

Transitioning to Table 2 column “Removed”,
which pertains to the ’Removed’ change type,
’actions/checkout’ emerges once again as the
predominant dependency. With 947 occurrences
across 94 projects, its prevalence aligns with the trends
observed in the *Added’ change type. The continuity
of ’actions/checkout’ in the 'Removed’ change type
further emphasizes its dynamic role, both introduced
and retired across diverse projects.

The second-highest occurrence in the 'Removed’
change type is attributed to ’actions/upload-artifact,
which records 259 instances across 58 projects. This
mirrors its position in the ’Added’ change type,
suggesting a consistent lifecycle pattern.

Similar behavior is noted in ’semver, ’debug,
and ’actions/setup-python,” which maintain comparable
patterns to their Added’ change type counterparts. This
congruence in behavior reinforces the notion that certain
dependencies exhibit consistent updating dynamics,
irrespective of their introduction or removal. Moreover,
dependencies such as ’@types/node,” ’actions/cache,’
and ’microsoft/setup-msbuild’ exhibit similar behavior
as those mentioned eariler in the added change type.

actions/checkout has a total of 32 releases range
from Aug 1 2019 to Oct 17 2023 with some version
of releases archived. The average of added of this
dependency is 14 which indicate the project that using
this dependency update regularly as the new releases
comes out. 93 out of the 125 projects have the version

Ecosystem | Usage (# of repos)
actions 128
pip 31
npm 24
nuget 19
cargo 13
rubygems 8
gomod 5
maven 4
composer 1

Table 5: Ecosystems

less than 4.0 while the highest version is 4.1.1.

actions/upload-artifact has a total of 23 releases
range from Aug 1 2019 to Jan 2023. 65 out of the 82
projects have the version less than 4.0 while the highest
version is 4.3.1.

semver has a total of 11 releases. 6 out of the
16 projects have the version less than 7.3.5 while the
highest version is 7.6.0.

actions/cache has a total of 48 releases. 16 out of
41 project have the version less than 3 while the highest
version is 4.0.0.

debug has a total of 37 releases. All of the 13
projects has the version higher than 4.3.1 while the
highest version is 4.3.4 (9 projects out 13).

actions/setup-python has a total of 39 releases. 10
output of the 30 projects has the version less than 4 while
the highest version is 5.0.0.

actions/download-artifact has a total of 20 releases.
8 out of the 46 projects has the version less than 3 while
the highest version is 4.1.3. 27 out of the 46 project has
the version 3.

3.2.2. Ecosystem GitHub Actions is an automation
and workflow framework provided by GitHub. It allows
you to define custom workflows, including automated
tasks and processes, directly within your GitHub
repository. These workflows are triggered by events,
such as pushes, pull requests, issues, or scheduled
events. GitHub Actions is often used for continuous
integration (CI), continuous deployment (CD), testing,
and other automation tasks.

npm, or Node Package Manager, is a package
manager for JavaScript programming language. It is the
default package manager for Node.js, a popular runtime
for server-side and networking applications. npm is
used to install, share, and manage packages (software
libraries) in the Node.js ecosystem.

NuGet is a package manager for the Microsoft
development platform, primarily used with the .NET

framework and related technologies. It helps developers
discover, install, and manage libraries, frameworks,
and tools necessary for .NET development. The term
“NuGet” is often used to refer to both the package
manager tool and the repository where packages are
hosted.

RubyGems is the package manager for the Ruby
programming language. It serves as a tool for
distributing and managing Ruby libraries and programs.
RubyGems simplifies the process of installing, updating,
and managing dependencies in Ruby projects.

Cargo is the package manager and build system for
the Rust programming language. It is an integral part
of the Rust ecosystem, providing tools for managing
dependencies, building projects, and handling various
aspects of the development process.

pip is the package installer for Python, and it plays a
crucial role in managing Python packages. It simplifies
the process of installing, upgrading, and managing
third-party libraries and tools for Python development.

gomod is the module system introduced in Go
(or Golang) starting from version 1.11 to manage
dependencies in a Go project. It provides a way to define
and manage dependencies at the module level, making it
easier to build and share Go code.

Apache Maven is a widely used build automation
and project management tool in the Java ecosystem.
It simplifies the process of building, managing, and
organizing Java projects. Maven uses a declarative
XML-based configuration to define project settings,
dependencies, and build phases.

Summary for RQ2: The analysis shows
widespread use of GitHub Actions workflows
for CI/CD, testing, and automation.
Additionally, the presence of popular libraries
such as “junit” and “semver” underscores
their critical role in software development.
Frequent updates in key dependencies reflect
dynamic CI/CD pipelines, emphasizing ongoing
workflow optimization.

3.2.3. Findings The majority of dependencies
belong to the ‘“actions” ecosystem, indicating a
prevalent usage of GitHub Actions workflows in
the examined repositories. This ecosystem includes
essential workflows such as ‘“actions/checkout” and
“actions/upload-artifact,” which facilitate various
aspects of CI/CD, testing, and automation processes
within GitHub repositories.

Versatility of Package Managers: The presence
of diverse package managers such as npm, NuGet,

RubyGems, Cargo, pip, and gomod underscores
the multi-language and multi-platform nature of the
analyzed projects. Each package manager caters
to specific programming languages and ecosystems,
reflecting the diverse technological landscape of modern
software development.

Popular Libraries and Frameworks: Certain
dependencies, such as “junit” and “semver,” are widely
used across projects, indicating their importance in
software development. These libraries provide essential
functionalities for testing, versioning, and other critical
aspects of software engineering.

Dynamic Updating Patterns: Dependencies like
“actions/checkout” and ““actions/upload-artifact” exhibit
high frequencies of updates across a significant number
of projects. This dynamic updating pattern suggests
a continuous integration and deployment (CI/CD)
pipeline, where developers frequently modify and
optimize their workflows to streamline the development
process.

Specialized Use Cases: Dependencies like
“actions/cache” and “actions/setup-python”
demonstrate a more specialized use, with fewer
occurrences but significant project adoption. These
dependencies are likely tailored to specific project
requirements, such as caching dependencies or setting
up Python environments, highlighting the diverse needs
of software projects.

Overall, the analysis provides valuable insights
into the common libraries and ecosystems
driving dependency changes in software projects.
Understanding these patterns is essential for developers
to make informed decisions about dependency
management, ensure project stability, and optimize
development workflows for enhanced productivity and
efficiency.

3.3. RQ3: What are the reasons behind these
changes?

To address RQ3, we initiated by extracting release
notes and commit messages for each release of every
project. Subsequently, we conducted preprocessing
on the messages by eliminating empty messages,
URLSs, commit SHAs, and special characters, including
numbers. We leveraged the STOPWORDS from
WordCloud [9] supplemented with additional words to
filter out non-essential data. Ultilizing functionalities
from NLTK [18], including word_tokenization,
WordNetLemmatizer, and ngrams, we tokenized all
messages, lemmatized verbs, and generated unigrams,
bigrams, and trigrams.

This meticulous preprocessing pipeline ensures

Table 6: Top 10 frequently occurring unigrams, bigrams, and trigrams in release notes/commit message

Unigram Count Percentage Bigram Count Percentage Trigram Count Percentage
fix 26103 3.78% arm dts 986 0.14% fix memory leak 616 0.09%
add 8092 1.17% memory leak 892 0.13% version bump package 554 0.08%
use 6601 0.96% fix error 844 0.12% fix use free 427 0.06%
test 4514 0.65% add miss 740 0.11% fix refcount leak 335 0.05%
support 4203 0.61% fix memory 690 0.10% fix error handle 305 0.04%
update 3973 0.57% use free 602 0.09% fix data race 297 0.04%
error 3639 0.53% return value 589 0.09% drm amd display 280 0.04%
change 3489 0.50% version bump 587 0.08% arm dts qcom 280 0.04%
check 3345 0.48% fix miss 570 0.08% data race around 275 0.04%
release 3307 0.48% error handle 568 0.08% null pointer dereference 241 0.03%
others 623777 90.27% others 683974 98.98% others 687431 99.48%

the extraction of pertinent information from release
notes and commit messages, facilitating comprehensive
analysis and interpretation to address RQ3. This
approach enables us to uncover underlying trends,
patterns, and reasons behind the observed changes,
providing valuable insights into the evolution of the
software projects.

The notes_table contains of 2824 entries each
has release notes and commit messages. We have
generated the word-cloud of the most frequent words
that are provided by the developers in terms of the
reason of dependency change. To verify the finding, we
have conducted a manual review on random selected 339
projects with 95% confidence level and 5% margin of
error.

3.3.1. Unigram The most frequently occurring
unigram, “fix,” emerges prominently within the
corpus, with a substantial count of 26,103 instances,
representing 3.78% of the total unigram count. This
statistical prevalence underscores a significant emphasis
on issue resolution and bug fixing within the software
projects under analysis.

Moreover, beyond “fix,” other notable unigrams such
as “add,” “use,” “test,” and “support” are observed, each
contributing distinctively to various facets of software
development and maintenance. For example, “add”
connotes the incorporation of novel functionalities,
while “use” implies resource or tool utilization.
Similarly, “test” and “support” underscore the critical
roles of testing procedures and assistance provision
within the project ecosystem.

While the majority of the unigrams predominantly
pertain to specific project issues or features, intriguingly,
certain instances do allude to dependency alterations.
Noteworthy examples include references to dependency
updates or introductions, such as “Fixes a linker error
on i0S due to a new dependency introduced with a
bgfx update”[3] and “Add deb package for Ubuntu
22.04’[15]. These occurrences illuminate the interplay
between software modifications and the underlying

dependencies, suggesting a nuanced understanding of
the software’s evolution within its broader ecosystem.

3.3.2. Bigram Among bigrams, the recurrent
occurrence of “arm dts” stands out prominently, with a
count of 986 instances, representing 0.14% of the total
bigram count. This statistical prominence suggests a
focused attention on ARM architecture and device tree
sources within the software projects under examination.

Additionally, notable bigrams such as “memory
leak,” ”fix error,” and “add miss” are identified,
each emblematic of common challenges and actions
encountered throughout the software development and
maintenance lifecycle. For instance, the presence of
“memory leak” signifies a persistent technical hurdle,
while ”fix error” implies concerted efforts to rectify
software bugs or oversights.

While the majority of the identified bigrams are
intricately linked to specific project issues or actions, for
example, “ARM: dts: spearl1340: Update serial node
properties”[19], “Fixed a memory leak in ppdOpen’[1],
it is noteworthy that certain instances do allude to
dependency changes. For example, within the same
release notes, references are made to dependency
adjustments, such as “bpf-doc: Fix build error with
older python versions”[19] and “Fixed builds when there
is no TLS library”’[1]. These mentions underscore
the interconnected nature of software modifications and
external dependencies, highlighting the consequential
impact of dependency management on project stability
and functionality.

3.3.3. Trigram In the trigram analysis, ’fix memory
leak” emerges as the most frequent, with a count of
616 instances, representing 0.09% of the total trigram
count. This statistical prominence underscores the
critical importance of addressing memory-related issues
within the software projects under scrutiny.
Additionally, other notable trigrams such as version
bump package” and “fix use free” are identified,
indicating activities closely associated with version

management and resource utilization, respectively.
The presence of these trigrams sheds light on
the multifaceted nature of software development
and maintenance, encompassing not only technical
troubleshooting but also strategic resource allocation
and optimization.

Moreover, phrases like “fix refcount leak” and
”drm amd display” are observed, highlighting specific
technical challenges and components within the
software projects. These trigrams offer insights
into the diverse array of issues encountered during
the development and maintenance phases, further
emphasizing the complexity inherent in modern
software ecosystems.

While the primary focus of trigrams may not
inherently relate to dependency changes, intriguingly,
within the same release notes, mentions of dependency
adjustments are intertwined with these technical terms.
For instance, while the trigram ”fix memory leak”
primarily addresses an internal project issue such as ‘fix:
memory leak when drop db...”[17], the accompanying
mention of “build: wupdate taospy and taos-ws-py
version” within the same release note indicates a
concurrent adjustment in dependencies. Similarly, the
trigram version bump package” directly correlates with
dependency modifications, as evidenced by instances
such as “Rust bindings version bump for package
1.3.26” [2].

Summary for RQ3: The analysis reveals
a predominant focus on issue resolution
and bug fixing within the software projects.
Additionally, while most linguistic patterns
pertain to internal project issues, sporadic
mentions of dependency changes underscore the
interconnected nature of software modifications
and ecosystem management.

3.34. Findings Analyzing the percentages
associated with each n-gram provides insights into
their relative importance within the corpus. Unigrams
like “fix” and “add” demonstrate relatively high
percentages, indicating their significance in the overall
text. Conversely, certain bigrams and trigrams exhibit
lower percentages, suggesting their occurrence in less
common or specific contexts. For example, phrases
like “arm dts” and “fix memory leak” may occur less
frequently but carry significant importance within the
context of the software projects.

In conclusion, the analysis of the top unigrams,
bigrams, and trigrams sheds light on the underlying
reasons behind dependency changes within the software

projects. The prevalence of terms such as “fix” and
“add” suggests a primary focus on resolving issues
and introducing new features. Common phrases like
“arm dts” and “fix memory leak” highlight specific
areas of concern, indicating a combination of functional
enhancements and technical optimizations.

Furthermore, the occurrence of phrases like
“memory leak” and ‘“version bump package”
signifies platform-specific modifications and version
management activities, respectively. These findings
suggest a multifaceted approach to dependency
changes, encompassing both functional improvements
and technical refinements to enhance software quality
and performance.

Overall, the analysis underscores the diverse
nature of dependency changes within the projects,
encompassing a wide range of motivations and
objectives. By identifying and understanding the
underlying reasons behind these changes, stakeholders
can make informed decisions to optimize software
development processes, prioritize development efforts,
and ensure the long-term sustainability and reliability of
the software projects.

4. Related Work

Dependencies: Wei et al. [16] highlighted
the challenge posed by the lack of a standard
package format and unified package manager, leading
to a scarcity of methods and tools for extracting
Software Bill of Materials (SBOM) from large-scale
C/C++ repositories. ~ To address this issue, they
developed CCScanner, a tool designed to define
dependencies in C/C++ projects. Similarly, Ling et
al. [7] investigated Centris, a state-of-the-art software
composition analysis (SCA) technique tailored for the
C/C++ ecosystem, focusing on deriving Third Party
Library (TPL) dependencies. Additionally, Yoonjong
et al. [11] introduced Cneps, a precise approach
for analyzing dependencies among reused components,
which addresses challenges such as indistinguishable
files and duplicated components.

SBOM: The significance of SBOMs in enhancing
software supply chain (SSC) security through
transparency, accountability, traceability, and security
has been emphasized by Boming et al. [20]. Their
study, comprising 17 interviews and 65 surveys with
SBOM practitioners, underscores the importance of
SBOMs in addressing security challenges within the
software supply chain.

While numerous studies have investigated C/C++
TPL dependencies and SBOMs in general, further
exploration into the specific domain of SBOM for

C/C++ is warranted.
5. Conclusion

The findings from this study shed light on various
aspects of dependency management practices and their
implications for software development. Through the
exploration of three research questions, we gained
insights into the frequency of dependency updates,
common libraries undergoing changes, and the reasons
behind dependency changes.

Firstly, our analysis of the frequency of dependency
updates revealed a wide spectrum of update patterns
across software projects. While some projects exhibit
minimal changes and stable release intervals, others
demonstrate dynamic update cycles with frequent
releases. Understanding these patterns is crucial for
developers to optimize resource allocation, balance
stability with innovation, and ensure the overall health
of software projects.

Secondly, our investigation into common libraries
undergoing changes highlighted the prevalence of
GitHub Actions workflows and diverse ecosystems of
dependencies. GitHub Actions workflows play a pivotal
role in enabling automation and CI/CD processes, while
the heterogeneous nature of dependency ecosystems
underscores the diversity of tools and technologies used
in software development.

Finally, our examination of the reasons behind
dependency changes uncovered common themes and
patterns in release notes and commit messages. By
analyzing textual data, we identified prevalent terms and
phrases indicative of bug fixes, feature enhancements,
and performance optimizations. Understanding these
reasons can inform developers’ decisions regarding
prioritization, resource allocation, and overall software
quality improvement efforts.

In conclusion, this study provides valuable insights
into dependency management practices and their
implications for software development. By leveraging
these insights, developers can make informed decisions
to optimize their development workflows, ensure project
stability, and deliver high-quality software products to
end-users.

6. Future Work

While this study provides valuable insights into
dependency management practices, several avenues
for future research exist. Firstly, further exploration
into the impact of dependency updates on software
project stability and performance could provide valuable
insights for developers. Understanding the trade-offs

between frequent updates and project stability can
inform dependency management strategies.

Additionally, investigating the adoption of emerging
technologies and frameworks in software projects
could offer insights into evolving trends in software
development. Analyzing trends in dependency usage
and adoption rates across different ecosystems can
provide valuable insights into the evolution of software
development practices over time.

Furthermore, exploring the role of automated
dependency management tools and techniques, such
as dependency analysis tools and automated update
mechanisms, could help streamline the dependency
management process and mitigate common challenges
faced by developers.

Overall, future research endeavors aimed at
understanding and improving dependency management
practices have the potential to significantly impact the
efficiency, reliability, and sustainability of software
development processes. By addressing these challenges,
researchers and practitioners can contribute to the
continued advancement of the field and the delivery of
high-quality software products to end-users.

References

[1] Apple. Release v2.3.0. 2019. URL: https://
github.com/apple/cups/releases/
tag/v2.3.0.

[2] AWS. Release v1.3.27. 2022. URL: https://
github.com/aws/s2n-tls/releases/
tag/v1.3.27.

[3]1 Babylon]S. Release 0.4.0-alpha.45. 2021. URL:
https : / / github . com / BabylondsS /
BabylonReactNative/releases/tag/
0.4.0-alpha.45.

[4] Ozren Dabic, Emad Aghajani, and Gabriele
Bavota. “Sampling Projects in GitHub for MSR
Studies”. In: [I8th IEEE/ACM International
Conference on Mining Software Repositories,
MSR 2021. IEEE, 2021, pp. 560-564.

[S] Github. Creating a fine-grained personal access
token. 2024. URL: https://docs.github.
com/ en / authentication / keeping -
your — account — and - data — secure /
managing — your — personal — access —
tokens#creating-a-fine-grained-
personal—-access—token.

[6] GitHub. Create integrations, retrieve data, and

automate your workflows with the GitHub REST
API. 2024. URL: https://docs .github.

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

com/en/rest?apiVersion=2022-11-
28.

Ling Jiang et al. “Third-Party Library
Dependency for Large-Scale SCA in the C/C++
Ecosystem: How Far Are We?” In: Proceedings
of the 32nd ACM SIGSOFT International
Symposium on Software Testing and Analysis.
2023, pp. 1383-1395.

Jianxin Jiao et al. “Generic
bill-of-materials-and-operations for high-variety
production management”. In: Concurrent

Engineering 8.4 (2000), pp. 297-321.

Andreas Mueller. WordCloud for Python. 2020.
URL: https://amueller .github. io/
word_cloud/.

Eamonn O Muiri. “Framing software component
transparency: Establishing a common software
bill of material (SBOM)”. In: NTIA, Nov 12
(2019).

Yoonjong Na et al. “Cneps: A Precise Approach
for Examining Dependencies among Third-Party
C/C++ Open-Source Components”. In: (2024).
Github. Use the REST API to interact with
dependency changes. 2024. URL: https

/ / docs . github . com / en / rest /
dependency - graph / dependency -
review ? apiVersion=2022 - 11 - 28 #
get—-a-diff-of-the-dependencies-
between-commits.

Github. Use the REST API to interact with tag
objects in your Git database on GitHub. 2024.
URL: https://docs.github.com/en/
rest /git /tags ? apiVersion=2022 -
11-28.

Github. Use the REST API to create, modify, and
delete releases. 2024. URL: https://docs.
github . com / en / rest / releases /
releases?apiVersion=2022-11-28.

Rigaya. Release 7.02. 2022. URL: https :

/ / github . com / rigaya / QSVEnc /
releases/tag/7.02.

Wei Tang et al. “Towards understanding
third-party library dependency in c/c++
ecosystem”. In: Proceedings of the 37th
IEEE/ACM International — Conference on
Automated Software Engineering. 2022,
pp. 1-12.

taosdata. Release 3.2.0.0. 2023. URL: https :
//github.com/taosdata/TDengine/
releases/tag/ver—-3.2.0.0.

(18]

(19]

(20]

NLTK Team. Natural Language Toolkit. 2023.
URL: https://www.nltk.org/.

Xanmod. Release Linux 5.17.2-xanmodl. 2022.
URL: https : //github . com/ xanmod /
linux / releases / tag /5 .17 . 2 -
xanmodl.

Boming Xia et al. “An Empirical Study on
Software Bill of Materials: Where We Stand
and the Road Ahead”. In: 2023 IEEE/ACM
45th International Conference on Software
Engineering (ICSE). 2023, pp. 2630-2642. DOT:
10.1109/ICSE48619.2023.00219.

