
A Large-Scale Empirical Study on the Occurrence of Improperly
Secured Application Programming Interfaces*

Craig Opie1 and Hangbo Zhang2

Index Terms— Cybersecurity, Application Programming In-
terfaces, Vulnerability, Bug Bounty Enumeration, Severity
ranking

Abstract— The intend of this paper is to perform a large
scale empirical study on bug bounty reports regarding API
vulnerabilities and weaknesses and identified common critical
and important API vulnerabilities discovered in the bug bounty
process using Microsoft’s security update severity rating system.
Moreover, we have defined the method to determine the severity
ranking of a vulnerability. We have cross-validate our findings
with OWASP Top 10 to determine the change of occurrence
of each vulnerability. Our research can help developers de-
termine the real world vulnerabilities and weaknesses, assign
the severity to the common API vulnerabilities, and validate
the OWASP Top 10 regarding API. Furthermore, our study
can provide a pathway for researchers to study and tackle the
common vulnerabilities.

I. INTRODUCTION

Secure software is the foundation of a quality software
system. Business models have shifted to include security
into the software development life-cycle due to the overall
cost of insecure applications and systems, and cybercrime
is expected to cost the world $10.5 Trillion annually by
2025 [30]. Despite the rise in cybercrime, on December
13th, 2016 Congress passed the 21st Century Cures Act [1]
which requires health care providers to publish application
programming interfaces (API) to provide complete access
to all data formats and elements (known as “resources”)
of a patient’s electronic health record (EHR) within one
year of the date of enactment. Health Level Seven Inter-
national (HL7), a health care standards organization, created
the Fast Healthcare Interoperability and Resources (FHIR,
pronounced “fire”) API which built upon earlier versions
of HL7 data format standards. However, FHIR API offered
easy-to-use implementation through HTTP-based RESTful
API protocol with resources represented in either RDF,
XML, or JSON formatting that ultimately led to the FHIR
API protocol being widely accepted across the healthcare
industry. Research published by cybersecurity analyst Alissa
Knight [2] has revealed that five separate insecure implemen-
tations of the FHIR API protocol exposed over four million
patient and clinician EHR resources across forty-eight mobile

*This work was not supported by any organization
1C. Opie is a student of Computer Science, College of Natural Science,

University of Hawai‘i at Mānoa, POST 318, 1680 East-West Road, Hon-
olulu, HI 96822 opieca at hawaii.edu

2H. Zhang is a student of Computer Science, College of Natural Sci-
ence, University of Hawai‘i at Mānoa, POST 318, 1680 East-West Road,
Honolulu, HI 96822 hangbo at hawaii.edu

web clients and twenty-five thousand healthcare providers
and payers.

Facebook announced a vulnerability of its API code which
resulted in fifty million users’ data being exposed and the
API access token being stolen in September 2018 [3]. This
event followed Cambridge Analytica’s abuse of Facebook’s
API security infrastructure which allowed them to acquire
user data on eighty million Facebook users [4]. Even when
a patch exists which could secure the API framework,
organizations large and small fail to implement the changes
in a timely manner. Equifax failed to patch a vulnerability in
the Apache Struts framework used to create their API and ex-
posed the personal information and social security numbers
of more than one hundred forty-three million US citizens
with damages exceeding sixty-eight billion dollars [5].

The examples provided above are of large, known, security
events that have been reported, but according to a survey
conducted in 2017 on US companies with at least two
hundred fifty employees or one million dollars in revenue,
the average sized business manages as many as three hundred
sixty-three public facing APIs [6]. Furthermore, the Postman
API Platform - a platform used by more than seventeen
million developers worldwide to build and use APIs - reports
that the number of grouped API requests collected by their
software has increased from less than half a million in 2016
to over forty-six million as of January 2021 which indicates
that API usage is rapidly increasing [7].

With the large number of businesses shifting their com-
pany’s resources to external cloud computing servers to
support client side and edge computing, compliance with
government regulations, and access for remote workers, there
is a greater reliance on third-party APIs which were designed
for back-end applications not visible to the user [8]. How-
ever, generic reuse of existing third party APIs which were
developed for a specific system may lead to vulnerabilities as
identified by Knight [2]. Average sized businesses are more
likely to skip research and development for a third party
solution that is available. Unfortunately, Web Application
Firewalls (WAF) and common security vulnerability and
malware identification software most likely won’t detect or
prevent misuse of APIs because the attack vector is via the
feature which makes APIs desirable. In order to secure APIs
and protect existing zero trust networks, we need to compare
mapped research publications regarding APIs with common
vulnerabilities and weaknesses in API systems identified
through bug bounty programs.

In this paper we investigate publicly available bug
bounty reports from HackerOne[22], BugCrowd[23], and

Pentester[24].land to identify common vulnerabilities and
weaknesses regarding APIs and discuss the severity of
the findings when compared to existing publications and
known issues captured through common vulnerability and
weakness enumeration utilizing mitre.org. This is in contrast
to previous works which focus on performing surveys to
identify demographics about API use, classifying previous
API vulnerabilities, and balancing API security with API
implementation as measured by functionality, speed, and
performance. We agree with recent findings by Knight [2]
that existing vulnerabilities can be classified into multiple
categories aligned to the Open Web Application Security
Project (OWASP1) API Security Top 10 [28]. We expand
existing work by providing the following contributions:

1) We perform a large scale empirical study on bug bounty
reports regarding API vulnerabilities and weaknesses.

2) We identify common critical and important API vul-
nerabilities discovered in the bug bounty process using
Microsoft’s security update severity rating system.

3) We determine if mapped research publications, that use
security bug reports, capture the API vulnerabilities
and weaknesses identified in our large scale empirical
research of bug bounty reports regarding API vulnera-
bilities and weaknesses.

Our research addresses challenges developers and security
researchers face by: determining real world vulnerability
and weaknesses identified through applicable bug bounty
reports, helping the developers assign severity to common
API vulnerabilities, and validating existing research and
security practices regarding APIs. Overall, developers and
security researchers will have a better understanding in the
area of API security from both academia and industry to
enhance their own API security practices.

This paper is organized as follows: In Section II, we
describe the goal of the study and research questions that we
intend to address. In Section III we describe the necessary
background and related publications.

II. GOAL AND RESEARCH QUESTIONS

A. Research Questions

The objective of this research paper is to help software
engineers identify common security gaps related to APIs
by conducting a systematic comparison of mapped research
publications that use security by reports, common weakness
and vulnerability enumeration, and publicly available bug
bounty reports.

1) RQ1: What are the common vulnerability and weak-
ness types associated with APIs identified through
publicly available bug bounty reports?
Vulnerabilities and weaknesses are often identified and
exploited in trending behavior. A researcher or analyst
will identify a vulnerability and then search for similar

1OWASP is an online community that produces freely-available articles,
methodologies, documentation, tools, and technologies in the field of web
application security. It provides free and open resources.

vulnerabilities and weaknesses. Additionally, this infor-
mation will allow researchers and developers to identify
when a vulnerability or weakness is discovered to be
widely effective. This will allow developers to prioritize
updates for quality.

2) RQ2: Which common vulnerability and weakness
types associated with APIs are rated critical or
important using Microsoft’s security update severity
rating system?
Common vulnerabilities and weaknesses are not typi-
cally published with severity ratings. Most of the time, it
is up to the developers to determine severity of each vul-
nerability for each project; however, scanning common
vulnerability and weakness data sets and applying sever-
ity ratings is a time consuming task which increases
overhead that must be allocated by each project. By
consolidating common vulnerabilities and weaknesses
associated with APIs with severity ratings will reduce
the overhead allocation necessary for existing and future
projects.

3) RQ3: Which mapped research publications that use
security bug reports capture the publicly available
bug bounty reports for APIs?
Mapped research publications that use security bug
reports are used by developers and researchers to iden-
tify applicable vulnerabilities and weaknesses. However,
comparing publicly available bug bounty reports for
APIs with mapped research publications will validate
prior research applicability to APIs.

III. LITERATURE REVIEW

A. Background

1) Background on Systematic Mapping Studies (SMS):
Systematic mapping is a technique that is widely used in
medical research and recently in Software Engineering[9]-
[11]. An SMS offers a ‘map’ of the research fields by
classifying papers on the basis of the relevant categories and
counting the work in each of those categories. An SMS offers
a summary of the research domain to support researchers to
identify topics that are well studied and to identify gaps that
need further analysis [12]. For this research, we use a peer
reviewed SMS titled Security Bug Report Usage for Software
Vulnerability Research: A Systematic Mapping Study [11]

2) API Security: An API is an interface that defines
how different software interacts. It controls the types of
requests that occur between programs, how these requests
are made, and the kinds of data formats that are used. It
works as the back-end framework for applications. By nature,
APIs expose application logic and sensitive data such as
Personally Identifiable information (PII) and because of this
have increasingly become a target for attackers. API security
refers to the practice of preventing or mitigating attacks on
APIs. This is a specific security that focuses on strategies to
mitigate the unique security risks of APIs.

3) Bug Bounty Program: A bug bounty program is a
deal offered by many websites, organizations and software
developers by which individuals can receive recognition and

compensation for reporting bugs, especially those pertaining
to security exploits and vulnerabilities. These programs allow
the developers to discover and resolve bugs before the
general public is aware of them, preventing incidents of
widespread abuse and data breaches. Bug bounty programs
have been implemented by a large number of organizations,
including Facebook, Google, Microsoft, and the internet bug
bounty.[16][17]

4) Exploit and Vulnerability: An exploit is a piece of
software, a chunk of data, or a sequence of commands that
takes advantage of a bug or vulnerability to cause unintended
or unanticipated behavior to occur on computer software,
hardware, or something electronic (usually computerized). It
is written either by security researchers as a proof-of-concept
threat or by malicious actors for use in their operations.
When used, exploits allow an intruder to remotely access
a network and gain elevated privileges, ore move deeper
into the network.[18] Vulnerabilities are flaws in a computer
system that weaken the overall security of the device/system.
Vulnerabilities can be weaknesses in either the hardware it-
self, or the software that runs on the hardware. Vulnerabilities
can be exploited by a threat actor, such as an attacker, to cross
privilege boundaries and perform unauthorized actions within
a computer system. To exploit a vulnerability, an attacker
must have at least one applicable tool or technique that can
connect to a system weakness. In this frame, vulnerabilities
are known as the attack surface.[19]

5) Microsoft Security and Severity Rating System: Mi-
crosoft security is a built-in software to Windows OS and
includes virus and threat protection, account protection, fire-
wall and network protection, app and browser control, device
security, device performance and health, family options,
and automatic security update. It will continually scan for
malware, viruses, and security threats. [20] A severity rating
system is published by Microsoft that rates each vulnera-
bility according to the worst theoretical outcome where that
vulnerability can be exploited to help customers understand
the risk associated with each vulnerability they patch. It
is intended to provide a broadly objective assessment of
each issue and distinct from the likelihood of a vulnerability
being exploited. There are four levels of the rating, critical,
important, moderate and low. Each of the ratings has different
identifiers. Critical, a vulnerability whose exploitation could
allow code execution without user interaction (warnings or
prompts). Important, a vulnerability whose exploitation could
result in compromise of the confidentiality, integrity, or
availability of data or processing resources with warnings
or prompts. Moderate, the impact of the vulnerability is
mitigated to a significant degree by factors such as authen-
tication requirements or non-default configuration. Low, the
impact of the vulnerability is comprehensively mitigated by
the characteristics of the affected component.[21]

B. Related Work

To prevent performing a study that someone else had
already performed, we first identified related studies and

reviews to justify the need to conduct the study and why
we believe it is timely to do so.

Farzana et al. [11] studied 46 publications that use security
bug reports through a systematic inclusion and exclusion
criteria and identified three topics that are addressed in
their set of selections as follow (i) vulnerability classifica-
tion, (ii) vulnerability summarization, and (iii) vulnerability
dataset construction. Their study has indicated that there
are potential research opportunities for further development
in vulnerability analysis. While the study relates to the
vulnerability classification and analysis, it does not provide
a detailed description of the threats and aspects of the API
security but more of software security in general.

Davis et al. [8] explored how and why the insecurity of
APIs is being overlooked in a zero-security environment.
Bigelow et al . [13] highlighted the concept of data vulnera-
bility from using insecure APIs in a secure environment and
discussed the effects of breaches and data loss resulting from
API insecurity. Farhan et al. [14] focused on the security
of APIs, and discovered how the culture and behavior of
users and developers might have benefited from API security,
or lack of, awareness.Also, it showed some of the reasons
behind API insecurity to users, developers, and organizations,
and how to improve the security of APIs without sacrificing
the ease and usability of the actual API. These studies
provided detailed information about the reasons behind the
insecurity of APIs, some results due to the insecurity of APIs
and some improvement advice. However, they do not provide
empirical evidence of the cause of the insecurity of APIs, or
the consequences due to the insecurity of APIs, or detailed
identification of the API vulnerabilities.

Diaz-Rojas et al. [15] conducted the review and discovered
66 threats to web APIs in the literature, 21 techniques, 11
API design patterns and 34 methods which can be applied
at a design level to detect, resist, react to or recover from
the discovered threats. They also stated the finding about
the relationship between the discovered threats and the
discovered techniques in regarding the reported effectiveness
of certain techniques or difficulty of defending against certain
threats. Although they have provided detailed information
about the web API vulnerabilities and weaknesses, and also
some analysis alongside, it was narrowed down to web APIs
only while there are more other types of APIs.

As a result of these findings, we come to the conclusion
that to identify the common security gaps related to the
API, we would need to conduct our own study, taking into
account a large scale empirical study on bug bounty reports,
to identify the critical and important API vulnerabilities.
Also, we will verify our findings by comparing that with
current bug bounties for validating a continuing vulnerability
with APIs.

IV. METHODOLOGY

We investigated and determined common vulnerability and
weakness types associated with APIs using vulnerability
databases and bug bounty platforms. Some industry leaders

and government organizations publish patched security vul-
nerabilities which can be found in the National Vulnerability
Database [26]. Others choose to ignore reporting guidelines
or fail to take action to correct the vulnerability at all. A
cybersecurity community effort to publish vulnerabilities to
a public database, known as the Common Vulnerabilities and
Exposures (CVE) database [27], has swept the world as a
means to hold companies accountable for their cybersecurity
and privacy responsibilities. Bug bounty platforms offer a
unique look into the frequency, severity, and longevity of
vulnerabilities after being published in the NVD and CVE
databases. Our process consisted of the following 5 steps:
(i) collect bug reports for API vulnerabilities; (ii) perform
bug report quality assessment, sanitization, and classification
using the OWASP [28] for API security; (iii) identify vul-
nerabilities with critical or important severity ratings using
the Microsoft Security Update Severity Rating System; (iv)
quantify and rank the bugs reported after being published in
public vulnerability databases; and (v) validate prior research
SMS applicability to APIs and OWASP API security top 10.

A. Collect Bug Reports for API Vulnerabilities

We collected bug reports for API vulnerabilities from
HackerOne, BugCrowd, and Pentester.land using their built-
in search filters for the keyword ‘API’ and a self-built
web scraping tool [25]. A total of 1028 reports have been
extracted from HackerOne, 15 reports from BugCrowd, and
85 reports from Pentester.land which make a total of 1128
reports in the dataset. The data collected was cataloged by
title, report number, url, severity rating, bounty, upvotes,
CVE, and report details.

We chose to use HackerOne, BugCrowd, and Pen-
tester.land for this report because each site offered consoli-
dated disclosed reports that were not repeated amongst each
other, the reports were able to be collected via web scraping,
and allowed for convenient data processing within a python

application [25], HackerOne and Pentester. land offered built
in filtering for keywords. To determine which keywords
were most effective at finding API related bug reports, we
performed a search using HackerOne’s built in bug report
filter using keywords associated with APIs in general: API;
Application Programming Interface; REST; RESTful; and
SOAP. Then we randomly sampled 25 bug reports for each
keyword to determine the ratio of True Positives. Our sample
results led us to use ‘API’ as our keyword when searching
for API related bug bounties:

• ‘API’ returned more than 1,000 results with 92% of the
samples being related to APIs.

• ‘Application Programming Interface’ returned 15 results
with 20% of results being related to APIs.

• ‘REST’ returned more than 1,000 results with 20% of
the samples being related to APIs.

• ‘RESTful’ returned more than 1,000 results with 25%
of the samples being related to APIs.

• ‘SOAP’ returned 21 results with 81% of the results
being related to APIs.

We collected our data using an ASUS PN51-E1 with an
AMD Ryzen 7 5700u, 32 GiB of DDR4-3200 SODIMM
RAM, and 1.0TB M.2 SSD, running Ubuntu 20.04.5 LTS
(64-bit) via a 1Gbps internet connection provided by Spec-
trum Charter Communications which earned speed test re-
sults using Google partnered with Measurement Lab of 717
Mbps download and 40 Mbps upload immediately after
completion of data collection.

We collected bug reports from HackerOne using a Python
application [25] that scraped the HackerOne hacktivity web-
page providing a keyword of ‘API’, specifying a sort based
on ‘Popularity’, and specifying a type of ‘Disclosed’. The
Python application [25] uses a combination of Selenium
and Beautiful Soup to control the web browser and parse
the information received. We used selenium to continuously
scroll down on HackerOne’s hacktivity page for a duration
of 300 seconds to populate our cursory dataset. This step
collected the bug report number, title, URL, severity rating,
associated CVE ID, bounty amount, and number of upvotes.
Then, each report’s associated URL was visited to collect
the bug report’s date, weakness description, summary, and
details exchanged between the security researcher and host
organization. The database was saved to an SQLite3 database
for storage and exported to CSV for post processing.

We collected bug reports from BugCrowd manually be-
cause BugCrowd does not offer a keyword filter and only
features 131 total disclosed bug reports to date. Each dis-
closed bug report was viewed independently by our team
and bug reports associated with APIs were manually entered
into a Google spreadsheet (Google Sheets). [32]

We collected bug reports from Pentester.land writeups by
downloading the writeups as a JSON file 2 and used a Python
application [25] to parse the bug reports for our keyword
‘API’ in the Title field. The results were saved as a CSV file
for post processing.

2https://pentester.land/writeups.json

B. Perform Quality Assessment, Sanitization, Classification

We removed 22 reports that did not contain details about
the bug bug report as these may provide no value to our inter-
est, we removed 11 reports that are challenge event writeup
and we removed 29 reports where the company stated that the
bug was knownrefiningosed, or previously identified but not
yet corrected to ensure duplicate reports were not included
in our study. We performed word sanitization to remove
filler words and created a word cloud to easily identify key
word concepts. Additionally, vulnerabilities were grouped by
common CVE names to assist in the classification. This work
was performed using an online tool written in python [29].
We first run the NLP on the dataset without stopwords. Then
we extract the stopwords from the generated word cloud
and then re-run the NLP on the dataset with the extracted
stopwords. We have repeated these steps until a valuable
word cloud is generated as shown in Table 1.

Vulnerability classification was cataloged into applicable
terms and categories taken from OWASP and included:
Broken Object Level Authorization (BOLA), broken user au-
thentication, excessive data exposure, broken function level
authorization, and mass assignment following the finding
from [2]. We have manually renamed the weaknesses to
match the categories from the OWASP such as Information
Disclosure to Excessive Data Exposure, Improper Access
Control to Broken Access Control. Also we have com-
bined some weaknesses into the same categories such as
Code/Command Injection and SQL Injection to Injection.
The result can be found in Table 2.

C. Identify Vulnerabilities with Severity Ratings

Severity levels are critical, important, moderate and low
following Microsoft’s rating system [21]. After processing
the data and refined the dataset according to this taxonomy,
we find that out of the total of 1056 reports, 125 reports are
labeled as critical which is 11.84%, 232 reports are labeled
as important which is 21.97%, 433 reports are labeled as
moderate which is 41.00%, 178 reports are labeled as low
which is 16.86%, and 88 reports are not labeled with any
severity level which is 8.33%.

D. Quantify and Rank the Bugs

The bug categories were quantified by the number of
occurrences and ranked based on the associated severity
level using the weighted values utilized by the Department
of Defense Iron Bank in the Overall Risk Assessment
Calculation [31]. The determination was weighted heavily
on severity rating and not on the number of occurrences
because even a single injection attack can be more damaging
to an organization than ten security misconfigurations or
insufficient logging or monitoring events. Critical severity
holds a weight of 10, important severity holds a weight of 4,
moderate holds a weight of 0.5, and low holds a weight of
0.25. We utilized the following equation to determine rank:

Rank = NSf

N = NumberOfOccurrences

Sf = SeverityFactor

The vulnerabilities were grouped by OWASP vulnerability
type and each vulnerability was assessed for its severity
rating. The mode for each severity rating within each vul-
nerability type was used to determine the most commonly
occurring severity rating. In the event that two modes existed,
we defaulted to a conservative approach of selecting the
more severe severity rating as the mode for the vulnerability
type. Then the most commonly occurring severity rating for
each vulnerability type was multiplied with the number of
occurrences to determine the vulnerability type’s rank. The
results of this calculation are available in Table 2.

V. RESULTS

After processing the data and refined the dataset according
to this taxonomy, we find that out of the total of 1056 reports,
158 reports are related to Information Disclosure which
is 14.96%, 118 reports are related to Cross-Site Scripting
(XSS) which is 11.17%, 76 reports are related to Improper
Authentication which is 7.20%, 67 reports are related to
Improper Access Control which is 6.34%, 57 reports are re-
lated to Cross-Site Request Forgery (CSRF) which is 5.40%,
and rest 656 reports are related to other API vulnerabilities
which is about 54.93%. We have provided the top 5 of the
other API vulnerabilities to expand the category as follows,
Code/Command Injection, Privilege Escalation, Insecure Di-
rect Object Reference (IDOR), Server-Side Request Forgery
(SSRF), and Violation of Secure Design Principles.

From Table 2, we introduce our Top 5 vulnerabilities with
some definition and the percentage of reports with severity
ranking. Also, we have included other 5 vulnerabilities that

are in our Top 10 with their severity ranking. To easily
visualize the difference between our finding and OWASP Top
10, we have marked different background colors following
the rules:

• Those found in our Top 10 and OWASP Top 10 have
been marked with a Green background color.

• Those found in our Top 10 but not in OWASP Top 10
have been marked with a Blue background color.

• Those found in OWASP Top 10 but not in our Top 10
have been marked with a Red background color.

• All the others have been marked with a White back-
ground color.

The full table of ordered weaknesses in our dataset can be
found in Appendix.

Injection consists of sending an API malicious com-
mands/codes through a user input field, whether a text input,
file upload, or other means. It allows malicious actors to send
code or other executable commands to the API’s interpreter,
which can be used to bypass security, change permissions,
access information, damage, or disable the API. 8.5% with
a severity ranking of 467.25 shows that it was the most
common severe vulnerability in our dataset.

Excessive Data Exposure is that too much information is
passed on from the API to the client, with the client bearing
the responsibility of filtering what API resources and other
information are displayed to the end-user thus, an API may
return sensitive information. 16.0% of the reports with a
severity ranking of 335.5 shows that it was the second most
common severe vulnerability in our dataset.

Broken User Authentication is an umbrella term for several
vulnerabilities that attackers exploit to impersonate legiti-
mate users online. Broadly, broken authentication refers to
weaknesses in two areas: session management and credential
management. 7.2% of the reports with a severity ranking
of 263.25 shows that it was the third most common severe
vulnerability in our dataset.

Broken Access Control is that users can act outside of their
intended permissions and therefore, lead to unauthorized
information disclosure, modification, or destruction of all
data or performing a business function outside the user’s
limits. 10.8% of the reports with a severity ranking of

254.25 shows that it was the fourth most common severe
vulnerability in our dataset.

Cross-Site Scripting (XSS) attacks occur when an attacker
uses a web application to send malicious code, generally
in the form of a browin ser side script, to a different end
user. Flaws that allow these attacks s to succeed are quite
widespread and occur anywhere a web application uses input
from a user within the output it generates without validating
or encoding it. 9.8% of the reports with a severity ranking
of 248.25 shows that it was the fifth most common severe
vulnerability in our dataset.

The other 5 vulnerabilities in the Top 10 are Privilege
Escalation with a severity ranking of 140.75, Cross-Site
Request Forgery (CSRF) with a severity ranking of 103.75,
Denial of Service with a severity ranking of 72.5, Server-Side
Request Forgery (SSRF) with a severity ranking of 56.75,
and Security Misconfiguration with severity ranking of 45.25.

Figure 1: Number of Occurrences of Severity for each
vulnerability ty

From Figure 1, we can find that there are 125 reports are
identified as critical, out of those reports, 27.2% is related
to Injection, 12% is related to Broken User Authentication,
11.2% is related to Excessive Data Exposure, 10.4% is
related to Broken Access Control, and 10.4% is related to
Cross-site Scripting.

There are 232 reports are identified as important, out of
those reports, 15.5% is related to Excessive Data Exposure,
12.5% is related to Injection, 10.3% is related to Broken User
Authentication, 9.9% is related to Broken Access Control,
and 9.5% is related to Cross-site Scripting.

There are 433 reports are identified as moderate, out of

those reports, 20.1% is related to Excessive Data Exposure,
12.0% is related to Cross-site Scripting, 11.8% is related
to Broken Access Control, 7.4% is related to Broken User
Authentication, and 7.4% is related to Cross-site Request
Forgery.

There are 178 reports are identified as low, out of those
reports, 18.0% is related to Excessive Data Exposure, 15.2%
is related to Broken Access Control, 9.6% is related to Cross-
site Scripting, 6.2% is related to Lack of Resource & Rate
Limiting, and 5.1% is related to Server-side Request Forgery.

Therefore, we can conclude that Injection, Excessive Data
Exposure, Broken User Authentication, Broken Access Con-
trol, and Cross-site Scripting have contributed to the majority
finding with the critical and important severity rating, 71.2%
and 57.7% respectively. This agrees with our Top 10 table
as critical and important have a higher severity ranking.

By comparing Table 2 and Table 3 we can see that 8
vulnerabilities of the OWASP Top 10 2019 can be found in
our dataset. Injection which is the 8th position in OWASP
ranked as 1st position in our dataset which might be due to
the increased occurrence in the past three years. Excessive
Data Exposure which is the 3rd position in OWASP ranked
as 2nd position in our dataset which shows just a slight
increase. Broken User Authentication which is the 2nd
position in OWASP ranked as 3rd position in our dataset
which shows a slight decreased occurrence in the past three
years. Security Misconfiguration which is 7th position in
OWASP ranked 10th in our dataset which shows a big
decrease in occurrence. Broken Object Level Authorization,
Improper Assets Management, Lack of Resource & Rate
Limiting, and Broken Function Level Authorization which
are 1st, 9th, 4th, and 5th position in OWASP respectively
ranked as 13th, 19th, 17th, and 25th in our dataset which
means a large decrease in occurrence of these vulnerabilities
in the past three years so that less attention is needed.
Mass Assignment and Insufficient Logging & Monitoring
which are 6th, and 10th in OWASP are not found in our
dataset which might show that these two vulnerabilities have
been tackled in the past three years. There are a total of 6
vulnerabilities that were not in the OWASP ranked in Top
10 of our dataset showing a great increase of occurrence
of those vulnerabilities which indicates more attention is
required from the developers.

A. Answering RQ1, What are the common vulnerability and
weakness types associated with application programming
interfaces identified through publicly available bug bounty
reports?

The most common vulnerabilities and weakness types as-
sociated with application programming interfaces identified
through publicly available bug bounty reports were assessed
by grouping vulnerabilities into vulnerability types as defined
by OWASP and counting the number of vulnerabilities in
each type. The 10 most common vulnerability and weakness
types are:

1) Excessive Data Exposure (169 occurrences)
2) Broken Access Control (114 occurrences)

3) Cross-Site Scripting (XSS) (104 occurrences)
4) Injection Attacks (90 occurrences)
5) Broken User Authentication (76 occurrences)
6) Cross-Site Request Forgery (CSRF) (56 occurrences)
7) Privilege Escalation (49 occurrences)
8) Server-Side Request Forgery (SSRF) (38 occurrences)
9) Denial of Service (DOS) (34 occurrences)

10) Business Logic Error (31 occurrences)

B. Answering RQ2, Which common vulnerability and weak-
ness types associated with application programming in-
terfaces are rated critical or important using Microsoft’s
security update severity rating system?

Each vulnerability has been manually assessed and as-
signed a severity rating using Microsoft’s security update
severity rating system. Information pertaining to the vulner-
ability’s description, impact, complexity, CVE ID, bounty,
and upvotes were considered when assigning the severity
rating. Then each vulnerability type was assessed for the
mode severity rating, we failed conservative and defaulted
to the more severe severity rating in the event of more than
one mode, to determine the most common severity rating
for each vulnerability type. We determined that vulnerability
types with less than five vulnerabilities should be identified
because this information is crucial for fully understanding
the data. As shown in Figure 1, taking the majority severity
rating of each vulnerability.

• Broken Object Level Authorization (Critical: 3 and
Important: 2 out of 6 total, 71%)

• Broken Function Level Authorization (Critical: 1 out of
1 total, 100%) - Less than five vulnerabilities in this
type.

• Buffer Overflow (Critical: 1 and Important 1 out of 3
total, 67%) - Less than five vulnerabilities in this type.

• HTTP Request Smuggling (Critical: 2 and Important 2
out of 7 total, 57%)

• Improper Assets Management (Critical: 1 and Impor-
tant: 2 out of 5 total, 60%)

• Injection (Critical: 34 and Important: 29 out of 90 total,
70%)

• Broken User Authentication (Critical: 15 and Important:
24 out of 75 total, 52%)

C. Answering RQ3, Which OWASP Top 10 API Vulnerabili-
ties are captured in the publicly available bug bounty reports
for application programming interfaces?

The OWASP Top 10 API Vulnerabilities include Broken
Object Level Authorization, Broken User Authentication, Ex-
cessive Data Exposure, Lack of Resource & Rate Limiting,
Broken Function Level Authorization, Mass Assignment,
Security Misconfiguration, Injection, Improper Assets Man-
agement, and Insufficient Logging and Monitoring. To have
a better representation of the top vulnerabilities within our
data, we utilized a system that quantified and ranked the bugs
based on severity ratings. The top 10 API vulnerabilities as
assessed in this research using publicly available bug reports
are:

1) Injection (rank 467.25)
2) Excessive Data Exposure (rank 335.5)
3) Broken User Authentication (rank 263.25)
4) Broken Access Control (rank 254.25)
5) Cross-Site Scripting (rank 248.25)
6) Privilege Escalation (rank 140.75)
7) Cross-Site Request Forgery (CSRF) (rank 103.75)
8) Denial of Service (rank 72.5)
9) Server-Side Request Forgery (SSRF) (rank 56.75)

10) Security Misconfiguration (rank 45.25)
Our findings agree with four of the OWASP Top 10 API

Vulnerabilities: Injection; Excessive Data Exposure; Broken
User Authentication; and Security Misconfiguration. Addi-
tionally, three more OWASP Top 10 API Vulnerabilities were
identified to be within our top twenty vulnerability types.
Those vulnerabilities are Improper Assets Management, Lack
of Resource & Rate Limiting; and Broken Object Level Au-
thorization. One OWASP Top 10 API Vulnerability namely
Broken Function Level Authorization was identified to be
within our top twenty-five vulnerability types. Unfortunately,
two of the OWASP Top 10 API Vulnerabilities did not
make our list: Mass Assignment and Insufficient Logging
and Monitoring.

VI. DISCUSSION

A. Validate Prior Research

We cross-validated and compared the vulnerability cat-
egories, number of occurrences, and severity levels with
OWASP Top 10 API Weaknesses. By comparing Table 2
and Table 3, we find only 8 vulnerabilities out of the Top
10 have been identified in our finding while 4 of them are
in our Top 10 as well while the other 4 are in our Top 25.

B. THREATS TO VALIDATE

Due to the limitation and setup of the platforms, we were
unable to retrieve more data than we have right now which
makes the finding possibly slightly off. The vulnerability
OWASP Top 10 was adopted from Knight [2] which is
based on the 2019 OWASP’s release which might have been
changed. Thus the validation with OWASP Top 10 might
show a large increase or decrease in occurrence that has
been identified by the newer release by OWASP. Majority
of Bug Reports are not Disclosed to the public, during the
data collecting phase we have found some reports have been

closed to the public by the request from the subject of that
vulnerability due to the safety concern. Additionally, some
bugs that are applicable to APIs may have been missed due
to our filtering keywords.

C. BENEFITS

We intend to show the researchers the gap between
industry facing and academic focusing. Thus, encouraging
more research to be conducted on the area of the common
vulnerabilities in terms of the cause and ways to prevent or
counter those vulnerabilities.

We want to warn the developers of the common vulnerabil-
ity with the severity ranking so they can pay more attention
to these possible vulnerabilities during their development
process. Also, we have shown them what they should be
looking for during the testing and maintenance phase.

We try to encourage the instructors to focus more on the
common vulnerabilities during their teaching process. So the
students who will be the developers or researchers in the
future will have the idea about those vulnerabilities and also
some possible solutions to fix or prevent those vulnerabilities.

VII. CONCLUSIONS

We have performed a large scale empirical study on bug
bounty reports regarding API vulnerabilities and weaknesses
and identified common critical and important API vulnerabil-
ities discovered in the bug bounty process using Microsoft’s
security update severity rating system. Moreover, we have
defined the method to determine the severity ranking of a
vulnerability using the weighted values from the Department
of Defense Iron Bank in the Overall Risk Assessment Calcu-
lation [31]. We have cross-validate our findings with OWASP
Top 10 to determine the change of occurrence of each
vulnerability. Our research can help developers determine the
real world vulnerabilities and weaknesses, assign the severity
to the common API vulnerabilities, and validate the OWASP
Top 10 regarding API. Furthermore, our study can provide
a pathway for researchers to study and tackle the common
vulnerabilities.

VIII. FUTURE WORK

We plan to collect more data in regards to the API
vulnerabilities from more bug bounty platforms and com-
panies. Besides cross validation with OWASP Top 10, we
will conduct the validation with existing mapped research
publications regarding API vulnerabilities. We will determine
the trend in API security based on date range and number
of reports that we collected. Also, we will determine if
public colleges and universities or public security courses
are teaching students about the cause of these vulnerabilities
and how to prevent those vulnerabilities.

REFERENCES

[1] 21st Century Cures, vol. 114th. Congress, 2016.
[2] Alissa V. Knight, Playing With FHIR: Hacking and Securing FHIR

API Implementations. Knight Ink, Las Vegas, NV, 2021.

[3] APIsecurity.io, “Issue 74: Vulnerability in login with Facebook,
API security talks,” API Security News, 12-Mar-2020. [On-
line]. Available: https://apisecurity.io/issue-74-vulnerability-in-login-
with-facebook-api-security-talks/. [Accessed: 01-Oct-2022].

[4] E. Chickowski, “2018 sees API breaches surge with no relief
in sight,” Security Boulevard, 04-Dec-2018. [Online]. Available:
https://securityboulevard.com/2018/12/2018-sees-api-breaches-surge-
with-no-relief-in-sight. [Accessed: 01-Oct-2022].

[5] T. Brewster, “How hackers broke equifax: Exploiting a
patchable vulnerability,” Forbes, 14-Sep-2017. [Online]. Available:
https://www.forbes.com/sites/thomasbrewster/2017/09/14/equifax-
hack-the-result-of-patched-vulnerability/?sh=4ed3ca1a5cda.
[Accessed: 01-Oct-2022].

[6] OnePoll, API Security Survey: A Survey of 250 IT Managers and Se-
curity Professionals. Imperva Inc., San Mateo, CA, 2017. https://
www.slideshare.net/Imperva/api-security-survey.

[7] M. Bettendorf, “API growth rate continues to skyrocket in 2020 and
into 2021,” Postman Blog, 06-Apr-2022. [Online]. Available: https:
//blog.postman.com/api-growth-rate/. [Accessed: 01-
Oct-2022].

[8] R. Davis, “Insecure API cloud computing: The causes
and solutions,” ExtraHop, 23-Jan-2020. [Online]. Available:
https://www.extrahop.com/company/blog/2020/
insecure-apis-cloud-computing-cause-solutions/.
[Accessed: 01-Oct-2022].

[9] N. M. Mohammed, M. Niazi, M. Alshayeb, and S. Mahmood, “Explor-
ing software security approaches in software development lifecycle: A
systematic mapping study,” Comput. Standards Interfaces, vol. 50, pp.
107–115, Feb. 2017.

[10] A. Rahman, R. Mahdavi-Hezaveh, and L. Williams, “A systematic
mapping study of infrastructure as code research,” Inf. Softw. Technol.,
vol. 108, pp. 65–77, Apr. 2019.

[11] S. Zein, N. Salleh, and J. Grundy, “A systematic mapping study of
mobile application testing techniques,” J. Syst. Softw., vol. 117, pp.
334–356, Jul. 2016.

[12] F. A. Bhuiyan, M. B. Sharif, A. Rahma, “Security Bug Report Usage

for Software Vulnerability Research: A Systematic Mapping Study”
IEEE Access, Feb. 2021.

[13] S. Bigelow, “6 cloud vulnerabilities that can
cripple your environment” [Online]. Available:
https://www.techtarget.com/searchcloudcomputing/tip/6-cloud-
vulnerabilities-that-can-cripple-your-environment.

[14] Farhan A. Qazi, “Insecure Application Programming Interfaces (APIs)
in Zero-Trust Networks”, Capitol Technology University, Dec. 2021.

[15] J. A. Diaz-Rojas, J. O. Ocharan-Hernandez, J. C. Perez-Arriaga, X.
Limon, “Web API Security Vulnerabilities and Mitigation Mecha-
nisms: A Systematic Mapping Study”, 2021 9th International Confer-
ence in Software Engineering Research and Innovation (CONISOFT),
2021, p.207-218

[16] HackerOne, “The Hacker-Powered Security Report - Who are Hackers
and Why Do They Hack”, June. 2018, p.23

[17] Aaron Yi Ding, De Jesus, G. Limon, M. Janssen, “Ethical hacking
for boosting IoT vulnerability management: a first look into bug
bounty programs and responsible disclosure”, Proceedings of the
Eighth International Conference on Telecommunications and Remote
Sensing - ICTRS ’19. Ictrs ’19. Rhodes, Greece: ACM Press: 49–55,
2019

[18] Definition of exploit, TrendMicro, [Online] Available:
https://www.trendmicro.com/vinfo/us/security/
definition/exploit

[19] Vulnerability (computing), Wikipedia, [Online] Available: https://
en.wikipedia.org/wiki/Vulnerability_(computing)

[20] Microsoft, “Security update severity rating system,” Microsoft.
[Online]. Available: https://www.microsoft.com/en-us/
msrc/security-update-severity-rating-system. [Ac-
cessed: 29-Oct-2022].

[21] Security Update Severity Rating System, [Online] Avail-
able: https://www.microsoft.com/en-us/msrc/
security-update-severity-rating-system

[22] HackerOne, “#1 trusted security platform and hacker program,”
HackerOne. [Online]. Available: https://www.hackerone.
com/. [Accessed: 20-Oct-2022].

[23] Bugcrowd, “#1 crowdsourced cybersecurity platform,” Bugcrowd, 06-

Jul-2022. [Online]. Available: https://www.bugcrowd.com/.
[Accessed: 20-Oct-2022].

[24] Pentester, “Offensive InfoSec,” Pentester, 23-Aug-2022. [Online].
Available: https://pentester.land/. [Accessed: 20-Oct-
2022].

[25] Craig Opie, Infosec_reports: web scraping tool, Github reposi-
tory, [Online] Available: https://github.com/CraigOpie/
infosec_reports.

[26] Information Technology Laboratory, National Vulnerability Database.
[Online]. Available: https://nvd.nist.gov/. [Accessed: 20-
Oct-2022].

[27] Common Vulnerabilities and Exposures. [Online]. Available: https:
//cve.mitre.org/. [Accessed: 20-Oct-2022].

[28] Open Web Security Application Project (OWSAP), OWSAP API
Security Project, [Online] Available: https://owasp.org/
www-project-api-security/. [Accessed: 20-Oct-2022].

[29] Anthony Peruma, NLP_example, Github repository, [Online] Avail-
able upon request: https://github.com/iSQARE-Lab/NLP_
Examples

[30] D. Freeze, “Cybercrime to cost the world $10.5 trillion annually
by 2025,” Cybercrime Magazine, 27-Apr-2021. [Online].
Available: https://cybersecurityventures.com/
cybercrime-damages-6-trillion-by-2021/. [Accessed:
29-Oct-2022].

[31] Iron Bank Value Stream, “Overall Risk Assessment (UNCLASSI-
FIED),” Platform One, 04-Apr-2022.

[32] Final Data, Google Sheet, [Online] Auvailable upon request:
https://docs.google.com/spreadsheets/d/
1ZKu8xTl5bDPMVredObPHrSF5rkej982l4xxl0hoXzP8/
edit?usp=share_link

APPENDIX

Table 4 and Table 5

Severity Rating Count for each vulnerability

Severity Ranking for all vulnerabilities in the Dataset with
count

